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We present a unified view of electric transport in undoped graphene for finite electric field. The weak field
results agree with the Kubo approach. For strong electric field, the current increases nonlinearly with the
electric field as E3/2. As the Dirac point is moved around in reciprocal space by the field, excited states are
generated. This is analogous to the generation of defects in a finite-rate quench through a quantum-critical
point, which we account for in the framework of the Kibble-Zurek mechanism. These results are also recast in
terms of Schwinger’s pair production and Landau-Zener tunneling. Other systems exhibiting a band structure
with Dirac cones, in particular, cold atoms in optical lattices, should exhibit the same dynamics as well.
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I. INTRODUCTION

The discovery of graphene, a single sheet of carbon atoms
in a honeycomb lattice has triggered intense research
recently1,2 not only because of its potential application in
future electronic devices but also because of its fundamental
physical properties: its quasiparticles are governed by the
two-dimensional Dirac equation, and exhibit a variety of
compelling �pseudo-� relativistic phenomena such as the un-
conventional quantum-Hall effect,3 a �possibly universal�
minimal conductivity at vanishing carrier concentration,2

Klein tunneling in p-n junctions4,5 and Zitterbewegung.6

Quantum transport and nonlinear responses driven by fi-
nite external fields represent a genuine nonequilibrium phe-
nomenon, giving rise to, e.g., dielectric breakdown or Bloch
oscillations.7 The quantum aspect of these effects is particu-
larly pronounced in reduced dimensions. Therefore, two-
dimensional Dirac electrons in finite electric fields, the sub-
ject of this work, provide a fascinating setting for studying
these issues.

A simple picture of electronic transport in a finite electric
field is drift transport as considered by Drude: carriers move
ballistically �p=eEt� until they change their momentum by a
scattering process, replacing the time t by the appropriate
scattering time. The special features of Dirac electrons rel-
evant for transport in finite field include: �i� their velocity is
pinned to the “light cone” Fermi velocity, vF, �ii� relativistic
particles undergo pair production in strong electric fields, as
predicted by Schwinger,8 and �iii� a uniform electric field
modifies locally the geometry of the Fermi surface by mov-
ing the Dirac point around in momentum space �Eq. �4��.
Since massless Dirac electrons can be thought of as being
critical, this can lead to the production of excited states, and
should leave its fingerprints on transport in finite electric
fields.

Landau-Zener dynamics, describing the �avoided� level
crossing in a two-level system,9 represents the natural lan-
guage to discuss Klein tunneling5,10 in graphene, and is ulti-
mately connected to defect formation and quench dynamics
through quantum-critical points �QCP�,11 described by the
Kibble-Zurek mechanism12,13 of nonequilibrium phase tran-

sitions. Applying these ideas to graphene allows us to ana-
lyze the real-time dynamics of the current, after switching on
the electric field, and to identify the various crossovers �sum-
marized in Table I�. Electric transport depends sensitively on
the frequency, temperature, electric field, and scattering rate
��, T, E, and ��, and the obtained current depends strongly
on how the �� ,T ,E ,��→0 limit is taken.14,15 Our results
follow from taking the �=T=0 limits in a finite electric
field.

II. 2+1 DIMENSIONAL DIRAC EQUATION

We focus on the 2+1 dimensional Dirac equation in a
uniform, constant electric field in the x direction, switched on
at t=0, through a time-dependent vector potential as A�t�
= �A�t� ,0 ,0� with A�t�=Et��t�. The resulting time-
dependent Dirac equation, describing low-energy excitations
around one of the Dirac points, say the K point in the Bril-
louin zone for clean graphene, is written as

H = vF��x�px − eA�t�� + �ypy� ,

i��t�p�t� = H�p�t� , �1�

where vF�106 m /s is the Fermi velocity of graphene and
the Pauli matrices ��� arise from the two sublattices2 of the
honeycomb lattice.

Due to this �pseudo-� spin structure, Eq. �1� represents a
natural formulation for the study of Landau Zener dynamics
as well. It is convenient first to perform a time-dependent
unitary transformation16

TABLE I. Temporal evolution of the nonequilibrium current for
clean graphene. Bloch oscillations show up for t� tBloch�� /eaE
�Ref. 7� with a the honeycomb lattice constant.

Classical
t	h /W

Kubo
h /W	 t		� /vFeE

Schwinger/Kibble-Zurek
	� /vFeE	 t	 tBloch

jx�Et jx�E jx� tE3/2
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U+HU = �z
p�t� . �2�

This accomplishes two things. First, it brings us to the adia-
batic basis in the Landau-Zener language,9 i.e., it tracks the
evolution of the state for an infinitesimal electric field. Sec-
ond, the form of Eq. �2� neatly distinguishes positive- and
negative-energy solutions. However, the very same solutions
could of course alternatively have been obtained in the origi-
nal �diabatic basis� as well from Eq. �1�.

The unitary matrix U accomplishing this transformation is

U =
1
	2

exp�− i�/2� exp�− i�/2�

exp�i�/2� − exp�i�/2� � �3�

and the explicit form of the resulting energy spectrum 
p�t� is
given by


p�t� = vF
	�px − eA�t��2 + py

2, �4�

where tan �= py / �px−eA�t��.
Finally, the transformed time-dependent Dirac equation is

given by

i��t�p�t� = 
�z
p�t� − �x

�vF
2 pyeE

2
p
2�t� ��p�t� , �5�

�p�t� = U�p�t� . �6�

Note that the electric field appears in two guises in this equa-
tion, both altering the energy spectrum and inducing off-
diagonal terms in the Hamiltonian, which is a consequence
of the explicit time dependence of the unitary transformation
�−iU+�tU�.

This we supplement by an initial condition. We study a
system initially in the ground state at half-filling, in which
the lower �upper� Dirac cone is fully occupied �empty�

�p
T�t = 0� = �0,1� . �7�

Starting from this state, occupation of a state in the upper
band ��z=+1� immediately signals that an excitation has
been produced.

The current operator in the original basis is obtained
through the equation of motion as jx=−evF�x. Under the
unitary transformation, it transforms into

jx = − evF��z cos � + �y sin �� . �8�

After switching on the electric field, the current of course
acquires a finite expectation value. By denoting �p

T�t�
= �p�t� ,�p�t��, we obtain the following expression:

�jxp�t� = − evF�cos ���p�t��2 − ��p�t��2�

+ 2 sin � Re�ip�t��p
��t��� . �9�

The first term is the current from particles residing on the
upper or lower Dirac cone while the second one describes
interference between them and is responsible for Zitter-
bewegung. Using QED terminology, the first and second
terms are referred to as conduction and polarization current,
respectively.17 In condensed matter, these are called intra-
band and interband contributions, respectively.

This expression can be simplified considerably. First, note
that charge conservation implies �p�t��2− ��p�t��2=2�p�t��2
−1. The interference correction also simplifies since

�t�p�t��2 = 2 Re�p�t��tp
��t�� . �10�

By using the transformed Hamiltonian, Eq. �5�,

��tp
��t� = i
p�t�p

��t� − i
�vF

2 pyeE

2
p
2�t�

�p
��t� �11�

consequently

�t�p�t��2 = −
vF

2 pyeE


p
2�t�

Re�ip�t��p
��t�� �12�

since Re�i�p�t��2�=0. As a result, the expectation value of
the current only requires the knowledge of np�t�= �p�t��2 as

�jxp�t� = − evF�vF�px − eEt�

p�t�

�2np�t� − 1� − 2

p�t�
vFeE

�tnp�t�� .

�13�

The term independent of np�t�, namely, evF
2�px−eEt� /
p�t�

vanishes at half-filling after momentum integration. In QED,
this originates from charge conjugation symmetry,17 while in
graphene, the same result is obtained by taking the full hon-
eycomb lattice into account as in Ref. 18.

III. TIME EVOLUTION OF THE CURRENT

For t�0, the upper/lower Dirac cone is empty/fully occu-
pied. The quantity np�t� measures the number of particles
created by the electric field in the upper cone through
Schwinger’s pair production.8 In graphene, instead of
particle-antiparticle pairs, electron-hole pairs are created.
Therefore, the basic quantity to determine transport through
graphene is np�t�.

We start by analyzing its behavior at weak electric fields
perturbatively. In this case, we can set E=0 in Eq. �5� except
in the numerator of the off-diagonal terms, and obtain

np�t� =
�eE�py�2

4vF
2 �p�6

sin2�vF�p�t
�

� . �14�

This approximation is valid for �p�=	px
2+ py

2�eEt, i.e., ev-
erywhere except for the close vicinity of the Dirac point.

Plugging this into Eq. �13�, the first term is already second
order in the electric field and does not contribute to linear
response. The second �polarization� term gives, taking valley
and spin degeneracies into account

�jx =
e2E

2��
�

0

�

dp
sin�2vFpt/��

p
=

e2

4�
E . �15�

The resulting dc conductivity is

� = j/E = e2�/2h �16�

in accordance with Ref. 18.
This is the value of the ac conductivity at finite frequen-

cies obtained from the Kubo formula2,19 and measured
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also,20 and since the model does not contain any additional
energy scale, which would change the value of the ac re-
sponse down to �→0, the same value for the dc conductiv-
ity sounds plausible. In this regime, all electrons propagate
with the maximal velocity vF, therefore the current is satu-
rated, independent of time. Within our approach, the small
field response is dominated by the Zitterbewegung.

The ultrashort time transient response �tW	h with W the
bandwidth� can be thought of as being fully classical. Ex-
panding Eq. �14�, we obtain

�jxp�t� = e2vF

py
2

�p�3
Et , �17�

which is independent of �. The current rises linearly with
time after the switch on as �jx�t�=4e2EWt /h2. The very
same result follows from a classical Hamiltonian Hcl and its
associated Hamilton equation

Hcl = vF
	�px − eEt�2 + py

2,

�tx =
�Hcl

�px
=

vF
2�px − eEt�

Hcl
, �18�

which gives for the classical current, jcl�p , t�=−e�tx, at short
times as in Eq. �17�. Dirac particles can therefore be accel-
erated as �t

2x=eE /mxx at short times. This can be recast to be
in accord with Newton’s equation if one defines an effective
mass as 1 /mxx=�2H /�px

2=vFpy
2 / �p3�, which originates from

the finite curvature of a cut through the Dirac cone.
For the general time and electric field dependence, Eq. �1�

can be solved analytically17,21 using the parabolic cylinder
functions. However, these do not immediately yield a trans-
parent analytical expression for the electric current for arbi-
trary electric field and time.

Nonetheless, to investigate the strong field, long time
�specified in Eq. �23�� response of Dirac electrons, we can
use the asymptotic expansion of these eigenfunctions,16,17 or
equivalently we can rely on the WKB approach22 to deter-
mine np�t� through the barrier penetration factor, similarly to
narrow gap semiconductors.23 As a result, we get

np�t� = ��px���eEt − px�exp�−
�vFpy

2

�eE
� , �19�

which is the celebrated pair production rate by Schwinger,8,17

a manifestation of Klein tunneling,5 and also the Landau-
Zener transition probability9 between the initial and final lev-
els. More precisely, the conditions for applicability are
�px ,eEt− px�� �py�.

This expression can be transparently understood invoking
Landau-Zener physics. Two levels at �px, weakly coupled
by py level cross with time, ending up at ��px−eEt�. The
transition is completed when both the initial and final levels
are well separated, in which case the mixing between them is
given by Eq. �19�, as plotted in Fig. 1. Equation �19� de-
scribes the nonequilibrium momentum distribution in the up-
per Dirac cone while 1−np�t� is that in the lower cone. Its
momentum dependence is highly nonthermal, i.e., it is
strongly asymmetric with respect to px while its decay in py
is Gaussian.

Putting Eq. �19� into Eq. �13�, one finds that the current is
now dominated by the conduction �intraband part� as

�jx�t� =
2e2E

�2�
	vFeEt2

�
. �20�

Crucially, the current now exhibits an increase which is lin-
ear in time, which at first glance appears to be quite analo-
gous to what is observed for electrons in a conventional
parabolic band.

However, the origin of the time dependence is completely
different: it stems from the increasing number of pairs due to
pair production à la Schwinger, each contributing with the
same velocity vF, as opposed to the continuously accelerated
fixed number of normal electrons in strong fields. The E3/2

dependence under distinct conditions has also shown up in
Refs. 10, 14, and 24. The contribution of the polarization
current reads in this range as

�jxpol�t� =
2e2

�3�
E , �21�

which is overwhelmed by the intraband contribution.
As advertised above, the expectation value of the total

number of particles-hole pairs created after the electric field
is switched on, N�t� can simply be obtained by considering
np�t�

N�t� =
2

�2�2� dpnp�t� =
2eE

�2vF�
	vFeEt2

�
. �22�

This leads to Eq. �20� via �jx�t�=evFN�t�.

IV. RELATION TO QUANTUM QUENCH DYNAMICS

Equation �22� is related to the quench dynamics through a
QCP,25 relying on the Kibble-Zurek mechanism.12,13 This
theory predicts the production of defects �excited states, vor-
tices�, when a system is driven through a QCP at a finite rate.
In a continuous phase transition, the relaxation time of the
system, which tells us how much time the system needs to
adjust to new thermodynamic conditions, diverges at the

t

px

−px
px − eEt

−px + eEt

2|py|

E

〈j
x
〉

Ec

interband

(polarization)

intraband

(conduction)

∼ E

∼ τE3/2

(b)(a)

FIG. 1. �Color online� Left panel �a�: visualization of the tem-
poral evolution of the Landau-Zener dynamics. Right panel �b�:
schematic of the current-electric field characteristics for graphene.
Interband transitions are overwhelmed by intraband ones with in-
creasing electric field and the dominant contribution to the mea-
sured current changes in character from polarization to conduction.
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critical point due to critical slowing down. When the relax-
ation time becomes comparable to the ramping time close to
the critical point, the system leaves the adiabatic regime and
enters into a diabatic �impulse� one. In the latter region, its
state is effectively frozen so that it cannot follow the time
dependence of the instantaneous ground states—as a result,
excitations are produced. The theory applies in many differ-
ent fields of physics, such as the early universe cosmological
evolution,12 liquid 3,4He �Refs. 13 and 26� or ultracold
gases.27

In the case of graphene, Eq. �1� can be diagonalized at
every instant with eigenenergies in Eq. �4�: the Dirac point
moves continuously in momentum space with location p
= �eEt ,0�, which results in defect �excitation� production.
The spectra from Eq. �4� can be considered as an ensemble
of 1+1 dimensional, initially gapped systems �labeled by px�
driven through a QCP. The initial energy gap is given by
vF�px�, the one-dimensional momentum is py, and the quench
is applied as vF�px−eEt�.

During the temporal evolution, the gap vanishes at the
instant t= px /eE, and then reappears with increasing time.
This effectively defines a QCP. It is characterized by the
critical exponents d=z=�=1.25

The dynamics close to that QCP is necessarily nonadia-
batic �impulse� due to the divergence of the relaxation time
and the finite quench time �1 /eE.11 The Kibble-Zurek
mechanism12,13 predicts a scaling form for the defect forma-
tion as28,29 Ed�/�z�+1�=E1/2 for a given 1+1 dimensional sys-
tem.

However, defect production occurs only upon complete
nonadiabatic passage through the QCP, i.e., for those initial
states which have seen their gap close during the time evo-
lution. At a given time t, this will be true for those values of
the momentum satisfying 0	 px	eEt. Obviously, this num-
ber of quenched “systems” scales linearly with both time and
electric field, �tE. Combining these, the Kibble-Zurek
mechanism thus also predicts the tE3/2 scaling of the total
defect density for Eq. �1�, similarly to Eq. �22�, linking the
nonlinear transport in graphene to critical phenomena.
�Quantum critical transport from a different perspective was
already studied in Ref. 30.�

Therefore, the low field, perturbative response is domi-
nated by interband contributions, and can be regarded as a
manifestation of Zitterbewegung. With increasing field, a
large number of electron-hole pairs are created, and intra-
band processes take over, producing nonlinear transport.

This crossover is determined by the dimensionless time
scale, which can be obtained by comparing our system to the
Landau Zener model as9

�cross =	vFeEt2

�
. �23�

For �cross	1, no level crossing occurs, and we can use per-
turbation theory to estimate the current, therefore we are in
the Kubo regime. The Kibble-Zurek mechanism defines the
freeze-out time11,13 by the instant t̂ when the system leaves
the adiabatic regime and enters into the impulse one, namely,
t̂=� / �vFeEt̂�, and the Kibble-Zurek form of the defect

density requires complete transit through the QCP, t
� t̂�⇔�cross�1�.

In Landau Zener language, the level crossing is completed
once �cross�1. The number of pairs created is nonperturba-
tive in the electric field and we can use the probability of
Landau-Zener tunneling to obtain an expression for the cur-
rent.

V. TOWARD NONLINEAR TRANSPORT

So far we have discussed the real-time evolution of the
current after the switch-on of the electric field, summarized
in Table I. In ideal clean graphene, for long enough times,
Bloch oscillation would set in due to the underlying honey-
comb lattice structure. The next question which naturally
arises is to what happens away from this highly idealized
limit.

In the simplest approach, the time t will be replaced by an
appropriate scattering time18 �sc. This could arise, in the
spirit of Drude theory, from scattering due to phonons or
impurities. Alternatively, in ballistic samples, ballistic flight
time from the finite flake size, �b=Lx /vF �Ref. 10� would
assume that role. If the scattering is energy dependent, how-
ever, the nonlinear transport can take a different form, such
as the one discussed in Ref. 14, which invoked the
Schwinger mechanism for interacting bosons near a QCP.

The observation of nonlinear electric transport requires,
from Eq. �23�, an electric field as

E � Ec = �/vFe�2, �24�

where �=min��sc ,�b ,��� is the shortest of the additional re-
stricting time scales �with �� defined below�. Ballistic trans-
port on the �sub-� �m scale implies ��0.1–1 ps, giving
Ec�103–105 V /m.31

The exponents of the electric field of the linear �trivially
1� and nonlinear �3/2� regime do not differ significantly, and
the measured current is expected to show a change of slope
as a function of the electric field in the crossover region, and
an extended electric field window would be required to re-
veal the noninteger exponent, as shown in Fig. 1. The linear
�small E� region is independent of time through Eq. �15�,
naturally accounting for the scattering-independent minimal
conductivity.

It is important to emphasize that in both regions, the cur-
rent is related to np�t�. Thus, even the linear response regime
witnesses pair production.

Recent transport measurements of undoped graphene
devices have revealed superlinear current-voltage
characteristics32 for strong voltages, with an exponent close
to the predicted one �1.5�, thus confirming our predictions
and the realm of Schwinger’s pair production for graphene.

In the presence of a small mass gap, the above results
need to be modified. The perturbative regime is characterized
by exponentially activated behavior due to the gap and the
current is exponentially suppressed at low temperatures �T
	�� as
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j � E exp�− �/kBT�

just as in normal semiconductors. On the other hand, for
strong electric field, we can still use the analogy to Landau-
Zener tunneling as

�jx�t� =
2e2E

�2�
	vFeEt2

�
exp�−

��2

�vFeE
� . �25�

Nonlinear transport sets in for E���2 /�vFe, which defines
a new time scale for Ec as ��=� /�	�.

VI. OUTLOOK

In general, the nonlinear current for d+1 dimensional �d
=1,2 ,3� Dirac electrons21 is

�jx�t� � tE�d+1�/2 exp�−
��2

�vFeE
� . �26�

For d=1, a good realization would be carbon nanotubes
�rolled-up graphene sheet�, whose “nonlinear” response is
still linear �j�E�, only the nontrivial exponential factor with
a possible gap reports about nonperturbative effects.33 The
d=3 case might be realized among the bulk electrons of Bi,
possessing a band-gap �0.015 eV.

These results are also relevant for other systems with pos-
sible Dirac fermions such as the organic conductor34

-�BEDT-TTF�2I3 with a tilted Dirac cone, or for topologi-
cal insulators. Dirac fermions can be realized in cold atoms
in an appropriate optical lattice �half-filled honeycomb,
kagome, and triangular lattices�, without any source of dis-
sipation or scattering, a regime not naturally accessible for

materials-based condensed matter systems. The momentum
distribution, Eq. �19�, reveals the effect of the driving electric
field before Bloch oscillations set in.7 The pairs created in-
crease the energy of the system as �t2E5/2, which, together
with the highly nonthermal momentum distribution of Bloch
states, can be measured after releasing the trap. This could be
a first direct experimental observation of the Schwinger
mechanism with microscopic resolution as well.

VII. CONCLUSIONS

In summary, we have studied the effect of finite electric
field on graphene. While the weak field response is consis-
tent with the Kubo approach, the strong field limit requires
nonperturbative considerations. The Dirac point is moved
around in the Brillouin zone by the field, which is related to
quench dynamics through a quantum-critical point, and the
current is obtained from the Kibble-Zurek mechanism. The
crossover from linear to nonlinear transport is determined by
the freeze-out time between the adiabatic and impulse re-
gions. The nonlinear transport involves Schwinger’s pair
production and Landau-Zener tunneling as well.

Note added. Recently we became aware of a related
work.35 Overlapping results are in agreement.
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